Fourier Analysis

Review.

Tho (WeyL).
Let γ be an irrational number. Then the sequence

$$
(\{n \gamma\})_{n=1}^{\infty}
$$

is equidistributed in $[0,1)$.
Recall that a sequence $\left(x_{n}\right)_{n=1}^{\infty} \in[0,1)$ is said to be equidistributed in $[0,1)$ if for any $(a, b) \subset[0,1)$,
(1) $\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{1 \leqslant n \leqslant N: x_{n} \in(a, b)\right\}=b-a$.

Equivalently, (1) can be rewritten as
(2) $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} X_{(a, b)}\left(x_{n}\right)=b-a=\int_{0}^{1} X_{(a, b)}(x) d x$
where $X_{(a, b)}^{(x)}=\left\{\begin{array}{lll}1 & \text { if } & x \in(a, b) \\ 0 & \text { if } & x \in[0,1) \backslash(a, b)\end{array}\right.$

Extend $X_{(a, b)}$ to be a 1 -periodic function on \mathbb{R}.

Then Weyl Thu says that
(3) $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} X_{(a, b)}(n \gamma)=\int_{0}^{1} X_{(a, b)}(x) d x$.

In what follows we prove (3).

Lem 2. Let f be a 1-periodic continuous function on \mathbb{R}. Then
(4) $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f(n \gamma)=\int_{0}^{1} f(x) d x$, where γ is an irrational number.

Pf. We divide the proof into 3 steps.
Step 1. We prove (4) if f is of the form

$$
f(x)=e^{2 \pi i k x}, \quad k \in \mathbb{Z}
$$

when $k=0$, then $f \equiv 1$. Then (4) clearly holds.
when $k \neq 0$,

$$
\begin{aligned}
\frac{1}{N} \sum_{n=1}^{N} f(n \gamma) & =\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k n \gamma} \\
& =\frac{1}{N} \sum_{n=1}^{N}\left(e^{2 \pi i k \gamma}\right)^{n} \\
& =\frac{1}{N} e^{2 \pi i k \gamma} \frac{\left(1-e^{2 \pi i k N \gamma}\right)}{1-e^{2 \pi i k \gamma}}
\end{aligned}
$$

Hence

$$
\left|\frac{1}{N} \sum_{n=1}^{N} f(n \gamma)\right| \leqslant \frac{2}{N\left|1-e^{2 \pi i k^{\gamma}}\right|} \rightarrow 0 \text { as } N \rightarrow \infty
$$

(Notice that $e^{2 \pi i k \gamma} \neq 1$ since γ is irrational).
Meanwhile $\int_{0}^{1} f(x) d x=0$
So (4) holds in this case.

Step 2. Notice that if f, g satisfy (4), then s_{0} is $\alpha f+\beta g$ for all $\alpha, \beta \in \mathbb{C}$.

As a consequence, (4) holds if f is
a trigonometric polynomial of the form

$$
\sum_{n=-N}^{N} C_{n} e^{2 \pi i n x}
$$

Step 3. (4) holds for all 1-periodic cts functions on \mathbb{R}.

Let f be a 1 -periodic cts function on \mathbb{R}.
Then $\forall \varepsilon>0$, by the Weierstrass approximation Chm,
\exists a trigonometric polynomial

$$
g(x)=\sum_{n=-N}^{N} C_{n} e^{2 \pi i n x}
$$

such that

$$
|f(x)-g(x)|<\Sigma \quad \text { for all } x \in \mathbb{R} \text {. }
$$

Now

$$
\begin{aligned}
& \left|\frac{1}{N} \sum_{n=-N}^{N} f(n \gamma)-\int_{0}^{1} f(x) d x\right| \\
& \leqslant \frac{1}{N} \sum_{n=-N}^{N}|f(n \gamma)-g(n \gamma)|+\int_{0}^{1}|f(x)-g(x)| d x \\
& \quad+\left|\frac{1}{N} \sum_{n=-N}^{N} g(n \gamma)-\int_{0}^{1} g(x) d x\right|
\end{aligned}
$$

$$
\leqslant 2 \varepsilon+\left|\frac{1}{N} \sum_{n=-N}^{N} g(n \gamma)-\int_{0}^{1} g(x) d x\right|
$$

$\leqslant 3 \Sigma$ if N is large enough.
This proves (4).

Pf of Weyl's Tho; i.e, (3) holds.
Finally, we prove (3).

$$
\text { ie. } \quad \frac{1}{N} \sum_{n=-N}^{N} X_{(a, b)}(n \gamma) \rightarrow \int_{0}^{1} X_{(a, b)}(x) d x \text {. }
$$

To prove this, for any $\varepsilon>0$, we construct two 1-periodic cts function $f_{\varepsilon}, f_{\varepsilon}$ such that

$$
f_{\varepsilon}^{-} \leqslant x_{(a, b)}(x) \leqslant f_{\varepsilon}^{+}
$$

and

$$
\begin{aligned}
& \int_{0}^{1}\left(f_{\left.\varepsilon^{(x)}-x_{a, b}^{+}(x)\right) d x<2 \varepsilon}\right. \\
& \int_{0}^{1}\left(x_{(a, b)}(x)-f_{\varepsilon}^{-}(x)\right) d x<2 \varepsilon .
\end{aligned}
$$

Then

$$
\begin{aligned}
\overline{\lim }_{N \rightarrow \infty} \frac{1}{N} \sum_{n=-N}^{N} X_{(a, b)}(n \gamma) & \leqslant \overline{\lim _{N \rightarrow \infty}} \frac{1}{N} \sum_{n=-N}^{N} f_{\varepsilon}^{+}(n \gamma) \\
& =\int_{0}^{1} f_{\varepsilon}^{+}(x) d x \\
& =\int_{0}^{1} x_{(a, b)}(x) d x+2 \varepsilon
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$ gives

$$
\overline{\lim }_{N \rightarrow \infty} \frac{1}{N} \sum_{n=-N}^{N} X_{(a, b)}(n \gamma) \leqslant \int_{0}^{1} X_{(a, b)}(x) d x
$$

Similarly,

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=-N}^{N} X_{(a, b)}(n \gamma) \geqslant \frac{\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=-N}^{N} f_{\varepsilon}^{-}(n \gamma)}{} \\
&=\int_{0}^{1} f_{\varepsilon}^{-}(x) d x \geqslant \int_{0}^{1} x_{(a, b)} d x \\
&-2 \Sigma
\end{aligned}
$$

Hence

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=N}^{N} x_{(a, b)}(n \gamma) \geqslant \int_{0}^{1} x_{(a, b)}^{(x)} d x
$$

